
Missed One! How Ballot Layout and Visual Task Strategy

Can Interact to Produce Voting Errors

Joshua Engels1, Xianni Wang2, Michael D. Byrne1,2

{jae4, xw48, byrne}@rice.edu
1Department of Computer Science, 2Department of Psychological Sciences

6100 Main St., MS-25, Houston, TX 77005 USA

Abstract

This paper presents an ACT-R model designed to simulate
voting behavior on full-face paper ballots. The model
implements a non-standard voting strategy: the strategy votes
first from left to right on a ballot and then from top to bottom.
We ran this model on 6600 randomly-generated ballots
governed by three different variables that affected the visual
layout of the ballot. The findings suggest that our model’s error
behavior is emergent and sensitive to ballot structure. These
results represent an important step towards our goal of creating
a software tool capable of identifying bad ballot design.

Keywords: ACT-R; error prediction; voting

Introduction

Voting is hard. The deliberations and conversations that go

into choosing who best represents one’s interests is an

important and time-consuming task, one that might be argued

to be the very backbone of a democracy. Understandably,

many may believe that the subsequent task of correctly

indicating one’s chosen candidate is comparatively easy and

straightforward. Surely once a voter gets the ballot and can

mark whoever they please, the hard part is over.

Often, this is correct. When ballots are designed well,

errors voters make are not systematic and generally will not

help or hurt any particular candidate. However, when ballots

are designed poorly, they may lead to systematic voting

errors. It is possible such errors do not matter if margins of

victory are large and thus such issues may go unnoticed.

However, in closely-contested elections it is not the general

case that is important. There have been numerous elections in

the past 20 years that have been documented as having been

decided by systematic voting errors caused by bad ballot

design. This ranges from the infamous “butterfly ballot” in

Palm Beach County, Florida in the year 2000 (Wand, et al.,

2001) to the most recent major U.S. election in 2018, where

a U.S. Senate seat (also in Florida) was almost certainly

decided by a poorly-designed ballot (Chisnell & Quesenbery,

2018). For a review, see Norden, et al. (2008).

While election interference by hacking is a far more flashy

and obvious risk, there has never been clear evidence that this

has swung an election, unlike with bad ballot design.

Ironically, the fear of hacking has led to a return to paper

ballots, which with their profusion of races packed onto small

sheets of paper makes ballot design even more important.

The most likely errors caused by poor ballot design are

under- and overvoting. An undervote is an error that occurs

when the voter fails to vote on a race that they intended to,

whereas an overvote is when a voter votes on a race more

than the allowable number of times (usually, more than once).

The problem of designing a ballot that will not cause people

to systematically under- or overvote is challenging. For

instance, it might entail running a usability study weeks

before the actual election. What makes the problem so

difficult is the sheer number of counties in the United States

(over 3000), each of which designs their ballots differently

and each of which have hundreds of different iterations of

ballots for each precinct they are responsible for. Manually

checking each ballot with a usability study is infeasible.

One possible solution to this problem is software that could

automatically check an arbitrary ballot for common design

errors. However, such a solution would only find errors that

had been previously made by voters on other ballots. If the

task is to predict if humans will make a mistake on a novel

ballot, it is difficult to imagine that chasing only known errors

will be sufficient. Here is where ACT-R (Anderson, 2007)

modeling comes in. Since ACT-R is generative, it can predict

behavior on any ballot and is not limited only to errors that

have been made previously.

Building such a predictive model is itself an extremely

challenging task because it would have to be able to predict

all historical voting errors as well as any new ones. For

example, while Green (2010) built an ACT-R model that

could make the same mistake voters did in a specific famous

ballot (the 2006 Sarasota County ballot), it was limited to

replicating one specific error behavior.

Thus, Wang, Lindstedt, and Byrne (2019) present the

outline for an ambitious project: a model that can simulate

the entire space of possible voting behaviors. They presented

a smaller scale version of this end goal model. The model ran

in a voting environment called VoteBox, a simulated

electronic ballot, consisting of a single race per screen and a

“next” button to navigate.

Nevertheless, within just this simple task was hidden great

complexity: the model used a total of 40 different voting

strategies constructed from differing levels of

ballot/candidate knowledge and navigational strategy

selections. The voters differing strategies and knowledge led

to different rates of error, showing that a model voter’s

strategy made a difference on whether or not it was able to

accurately vote for its intended candidates. However, this

effort was preliminary in that it did not vary the design of the

ballot; it simply demonstrated that errors were emergent from

a particular combination of task strategy and memory

contents.

In this paper, we describe a model that represents the

natural extension of this system to show that errors can

emerge from the interaction of strategy and ballot design.

This model also works in a more challenging visual

environment: it handles simulated full-face paper ballots. A

full-face ballot is one that has all the races on a single display

(usually a piece of paper). This extension introduces new

model building challenges. Our new models must navigate

both between and within races, and our model creation

process must be flexible enough to explore an even larger

voting strategy space.

Unsurprisingly, the increased complexity of a full-face

paper ballot leads to increased model error. Thus, we also

describe the error rates of simulated voters on differing

simulated ballots. This represents an important step towards

our end goal of constructing a generative model able to

identify bad ballots.

Method

First, we will describe the design of our full-face ballots, then

the design of the model, and our simulation of the model

across many possible ballot designs.

Ballot Design

We built simulated full-face paper ballots for the model

which consist of a virtual screen populated with several

columns of races. Each race has a title, a list of candidates

and their associated parties, and a list of buttons that the

model can click to vote for a candidate. (see Figure 1).

Figure 1: Top left corner of a simulated ballot.

The resulting simulation is not quite the same as an actual

paper ballot. For example, the model clicks on a button

instead of filling in a circle and does not obscure the ballot

with its hand while doing so. However, the ballot is typical in

visual layout, which we believe is similar enough to cause

many of the same errors we expect human voters to make.

Because ACT-R’s nascent ability to group visual items is

somewhat limited (Lindstedt & Byrne, 2018), we had to work

around this. So, to help the model navigate, we colored the

race header red, the candidates purple, and the parties blue.

The coloring allows the model to make visual location

requests like “the closest red text in the column to the right”

(when finding the closest race) or “the closest purple text to

my current position” (when finding the candidate group of

the currently attended race). Since we suspect humans can

also reliably differentiate between race headers, candidates,

and parties by using the visual characteristics of the ballot,

we believe coloring the ballot does not give the model an

unfair advantage. However, we are exploring alternative

ways to work around this problem.

Model Design

We built the model with one overarching goal in mind: to

simulate as wide an array of voters as possible.

Our modular system split a simulated voter’s strategy into

four different pieces: (1) macronavigation, the process of

moving from one race to the next; (2) visual encoding, the

process of determining the race, party, and candidate visual

groups for each race; (3) micronavigation, the process of

finding the intended candidate to vote for within each race;

and (4) selection, the process of actually clicking on the

button corresponding to the chosen candidate. At runtime we

selected one strategy from each of these categories and

combined them together with a declarative memory file to

build an ACT-R model. Note that how the model does pieces

2–4 was taken directly from the Wang et al. (2019) model.

Designing A New Strategy

We first built the most obvious option for each strategy

category because we wanted our initial strategies to lead to a

composite voting strategy with no errors. We wanted to

ensure that our model worked before we started varying

pieces to induce errors.

Our first strategy after these obvious ones was a non-

standard macronavigation strategy. Our model’s standard

macronavigation strategy was top to bottom left to right; that

is, the model started in the top left corner and went all the

way to the bottom of the column and then went over to the

next column to the right and again went top-to-bottom,

repeating until it was finished. This is the most obvious

method of macronavigation, and as noted above resulted in

no mistaken votes. The first alternative macronavigation

strategy we built was left to right top to bottom.

The left to right top to bottom strategy starts on the upper

leftmost race on the ballot. It then proceeds to the right,

navigating to the closest race to the last race it voted on in the

next column over, and repeating until it votes on a race in the

last column. Then, it goes back to the beginning of the row,

finds the next race down in the left column, and repeats

voting from left to right. The model continues until it runs out

of new races in the left column.

On our ballots the races in each column are horizontally

aligned, as might be expected. However, when race lengths

Figure 2: The green arrows mark the first part of the left to right top to bottom model’s voting pattern on this specific ballot.

The model skips CommisionerofAgriculture.

are allowed to vary, races in different columns are not

vertically aligned, as the generation process always placed

each race a set distance below the last race. Because our new

macronavigation strategy proceeded initially from left to

right, when races were vertically misaligned our model could

miss races. Note that when the ballot is a perfect grid where

all races are vertically aligned, the model does not make

errors. It is the interaction of this strategy with the design of

the ballot that results in errors. For an example of the model

missing a race on a typical ballot, see Figure 2.

In Figure 2, when the model reaches the third race down in

the left column (“United States Representative District 7”) it

votes on that race and then proceeds right along the row,

selecting and voting on the closest race and repeating until it

reaches the last column. The model then returns to the race at

the beginning of the row and proceeds to the first race on the

next row down (“Governor”). Here is where it makes its

mistake: because the “Railroad Commissioner” race is the

closest race to “Governor,” the model votes on “Railroad

Commissioner” for its second race in the row and so skips

Commissioner of Agriculture. It never returns and votes on

this race.

We observed that the races our new strategy missed

depended on the layout of the races on the ballot and

determined it was critical to understand if this was

systematic.

Experiments

Once we had a simulated voter making structure-based

mistakes, we decided to test how these mistakes changed as

a function of the ballot layout. Initially, our ballot was static,

consisting of a manually-positioned set of races and

candidates. Our first step was modifying the ballot so it could

be dynamically generated. Every time we ran the model, our

generation process allowed us to vary the vertical spacing

between races, the vertical space between the race header and

the candidates, and the vertical space between candidates. We

chose ranges of the variables that led to ballots our model

could still realistically parse but that nevertheless were

visually distinct (see Table 1). As the ballot was generated

each race was randomly selected to have between 1 and 4

candidates.

Table 1: Ballot Layout Variables

Variable Range (Pixels)

Space between races 5 – 15

Space between header and candidates 20 - 22

Space between candidates 15 - 18

For each one of the 132 possible combinations of spacing

variables (see Table 1), we ran the model on 50 randomly

generated ballots. Thus, our model was run on 6,600 ballots

for a total count of 158,338 individual races. For each run, we

recorded the exact race positions and race order on the ballot,

as well as the order the model voted on races (including any

races the model missed).

The data allow us to characterize this strategy and identify

how and where it fails. We will also describe good and bad

ballot design by seeing which designs lead to more error in

the model. This will serve as a case study for how new

strategies built on our architecture will find errors in novel

ballots.

Results

First, we define model percent error, the percent of races that

our model skips. Our model’s global percent error is around

13.04%, meaning that, on average, given a random race on a

ballot there is a 13.04% chance that our model will not vote

on it. This rate is certainly much higher than any experimental

rate in human voters, but as this strategy is nonstandard, this

result is to be expected. Of course, most people do not make

anywhere near these many errors, but average error rates in

the wild likely stem from outliers like this strategy.

Effects of Race Location

We first examine the relationship of race location on the

ballot to model error. We observe that there is a general trend

of increasing error across columns (see Figure 3). In other

words, races in columns that are further to the right are more

likely to be skipped.

Figure 3: Average percent error across races in the left,

middle, and right column across all ballot runs

In fact, since we recorded the exact y coordinate and

column for every race on every ballot, we can generate a

heatmap of error rate by race position on the ballot (see

Figure 4). Each bin collates the percent error of the model on

races within 10 vertical pixels, where the y position of a race

is its header.

Figure 4: Heatmap of the model’s error according to races’

column number and y position.

Of interest are places in Figure 4 where errors are likely.

One immediately obvious place is the bottom right corner,

where average percent error approaches 1. The model almost

always misses races there. To make sense of this result, we

observe that the only way a race can have its start in one of

those bottom right boxes is if it is very short. It makes sense

that for short races nestled in the bottom corner, people will

frequently get to the last race in the left column and vote

across that row not low enough to reach the bottom corner

races.

However, other than this, errors are more or less uniformly

distributed across the ballot. This result hints at the strength

of our model: errors occur seemingly randomly across the

ballot because they are emerging from the specific structure

of individual random ballots. Thus, using our data of each

experiment’s race layout, we move onto examining how

specific elements of ballot structure influence model error.

Effects of Ballot Structure

We first examine the error rate as we vary the amount of

vertical space between the end of each race and the beginning

of the next. Recall that vertical space is just one of the spacing

variables we manipulated (see Table 1). Thus, each specific

vertical spacing value includes many observations from

ballots built from combinations of the other spacing

variables. While we did examine these other spacing

variables, we found they had no significant effect on the

model’s error rate.

As the space between races decreased, voting error

increased (see Figure 5). This result validates the intuition

that the more cluttered a ballot is, the more likely a simulated

voter is to miss a race.

Figure 5: Each black dot is the average percent error across

all ballots with a specific race spacing. The blue line is the

linear regression for the trend, the red line is the average

error of the model, and the shading represents 95%

confidence intervals for the line.

We also examined how the length of a race was related to

the chance it would be skipped and found similar results: as

the length of a race decreased, the model’s chance of skipping

it (its error rate for races of that length) increased (see Figure

6). Of note, single-candidate races are most likely to be

missed, but of course skipping such a race will not change the

outcome of an election, since unopposed candidates are

guaranteed to win.

Figure 6: Average error rate of the model on races of one

candidate, two candidates, three candidates, and four

candidates.

Finally, we looked at how the model’s error rate varied as

a function of the vertical distance from a given race to the

nearest race to it in the last column. In Figure 7, we show a

stacked bar plot of races missed and races voting on

according to this variable. This graph shows two things: one,

that the chance a simulated voter misses a race increases as

the closest distance to the last race increases, and two, that

the number of races that are far from any prior race decreases

as the distance increases. The reason that the distribution is

non uniform, with peaks in the 0 bin, 15-20 bin, 30-35 bin,

and 45-50 bin, is a result of the way ballots were generated.

The candidate spacing varied from 15 to 18 pixels (see Figure

2), and it was frequently the case that the closest race in the

last column was an integer multiple of candidate space away.

Figure 7: Stacked bar plot of the number of races voted on

and not voted on across all model runs, plotted according to

the vertical distance between the race and the closest race in

the last column (bins of 5 pixels).

This graph more than any other illustrates the model’s

tendency to miss races that are not lined up in a row; building

and running the simulation allows us to identify what these

races are for any given ballot.

Conclusion

Races were more likely to be missed if they were smaller, out

of alignment with the races in other columns, or more

cramped overall. These are all characteristics of bad ballots

that our model detected organically. The detection behavior

emerged out of the design of the strategy; it was not

hardcoded. The fact that the model’s error behavior was

unplanned and emergent is in line with the long-term plan of

building models that can produce novel errors on novel

ballots.

Notably, using a non-standard macronavigation strategy

amplified our ability to detect bad ballots. For instance, a

strategy moving in the same direction as the races were

originally placed might not mind if the races were very close

together, but any other strategy would. Ballot designers need

to cater to less common strategies, so an ability to detect

when ballots will cause systematic errors in voters using these

strategies is crucial.

Indeed, we should note that the average error for this

strategy is far higher than the average error for all voters,

even assuming as we did that once a voter found a race they

would successfully vote on it (choosing a perfect

micronavigation strategy, in the parlance of our model). Most

real voters probably use a more successful macronavigation

strategy. They also may take additional steps we do not yet

account for, like scanning the ballot again to see if they

missed any races. However, if even a subset of voters uses

this strategy, or one like it, then we must account for them in

our model, as a subset of voters can still have a deciding

impact on a close race.

Thus, one of our next steps will be to map the space of

macronavigation strategies by running eye tracking

experiments. This research will seek both to find new types

of voting strategies and to estimate their prevalence in the

voting population. Then, once we build models that represent

all of these voting strategies, we will be able to build a ballot

analysis tool that runs ballots through each model and

weights the resulting error rates by how often people actually

use the strategy. Our goal is to be able to use this tool to come

up with a global error rate prediction for an arbitrary ballot,

preventing badly designed ballots from ever reaching voters.

To implement these new strategies, we will need to expand

the capabilities of ACT-R itself. We plan to start by extending

the visual grouping module to group objects in a hierarchy

and by adding new options for visual navigation. With these

new capabilities, we will be able to build new sub-strategies

for the model, including new ways for the model to encode

the candidate, party, and race groups and new ways for the

model to find and click the circle corresponding to a

candidate. Each strategy will have a characteristic error

pattern like we described in this paper, and together the set of

strategies will span the possible space of errors.

Thus, while some of the findings in this paper may seem

obvious, they must partly be viewed in the light of the wider

project. Our model was able to vote on a wide array of ballots

that looked visually different and successfully make

consistent errors. More than just characterizing the type of

ballots and races that are more disposed to be skipped by a

specific voter, these findings confirm the feasibility of

attempting to eventually predict errors in novel ballots.

Furthermore, the model makes an interesting additional

prediction: since our model is more likely to miss races in the

center and right columns, and more likely to miss smaller

races, the models predicts that average voter error should be

higher on down ballot races in the real world (as some voters

may use a similar left to right strategy). This skew is likely to

be more severe in years with a presidential race, since there

are often many candidates running for president, meaning

that the first race in the left column would be very long, thus

making it more likely that other columns races will not be

aligned.

We can even use our results to generate applied advice for

a hypothetical election official who must build a ballot with

races of varying length. Such an official should strive to line

up race headers as much as possible, sacrificing races per

page by leaving blank space so that races can be aligned (this

would help increase accuracy not only with the specific

strategy we tested, but any strategy that goes left to right).

Moreover, the official should try not to squeeze races into the

bottom right corner, and in general try to keep the ballot

uncluttered by putting as much space between races as

possible. The official might even consider making the space

within races more cramped to make the delineations between

races clearer, although this will introduce the possibility for a

voter filling in the wrong bubble or missing the candidate

they want to vote for. Future models we build will predict

these errors as we continue towards our goal of constructing

a model that can simulate all possible voter behavior.

Acknowledgments

This research was supported by grants #IIS-1920513 and

#CNS-1550936 from the National Science Foundation. The

views and conclusions contained herein are those of the

authors and should not be interpreted as representing the

official policies or endorsements, either expressed or implied,

of NSF, the U.S. Government, or any other organization.

References

Anderson, J.R. (2007). How can the human mind occur in

the physical universe? New York: Oxford University

Press.

Chisnell, D., & Quesenbery, W. (2018). How a badly-

designed ballot might have swayed the election in

Florida. Washington Post, November 12, 2018.

Retrieved from

https://www.washingtonpost.com/outlook/2018/11/12/h

ow-badly-designed-ballot-might-have-swayed-election-

florida/

Lindstedt, J. K., & Byrne, M. D. (2018). Simple

agglomerative visual grouping for ACT-R. In I. Juvina,

J. Houpt, & C. Myers (Eds.), Proceedings of the 16th

International Conference on Cognitive Modeling (pp.

68–73). Madison, WI: University of Wisconsin.
Norden, L., Kimball, D., Quesenbery, W., & Chen, M.

(2008). Better Ballots. New York, NY: Brennan Center

for Justice, NYU School of Law.

Wand, J. N., Shotts, K. W., Sekhon, J. S., Mebane, W. R.,

Herron, M. C., & Brady, H. E. (2001). The butterfly did

it: The aberrant vote for Buchanan in Palm Beach

County, Florida. American Political Science Review,

95(4), 793–810.

Wang, X., Lindstedt, J. K., & Byrne, M. D. (2019). The

model that knew too much: The interaction between

strategy and memory as a source of voting error. In

Stewart, T.C. (Ed.) Proceedings of the 17th

International Conference on Cognitive Modeling (pp.

283–288).Waterloo, Canada: University of Waterloo.

https://www.washingtonpost.com/outlook/2018/11/12/how-badly-designed-ballot-might-have-swayed-election-florida/
https://www.washingtonpost.com/outlook/2018/11/12/how-badly-designed-ballot-might-have-swayed-election-florida/
https://www.washingtonpost.com/outlook/2018/11/12/how-badly-designed-ballot-might-have-swayed-election-florida/

